
Journal of Network Communications and Emerging Technologies (JNCET) www.jncet.org

Volume 7, Issue 9, September (2017)

ISSN: 2395-5317 ©EverScience Publications 10

Secure Data Deduplication in Hadoop Distributed

File Storage System

Naresh Kumar

Assistant prof. Department of Computer Science and Engineering, University Institute of Engineering and

Technology (UIET), Kurukshetra University, Kurukshetra (KUK), 136119, India

Shalini

Department of Computer Science and Engineering, University Institute of Engineering and Technology (UIET),

Kurukshetra University, Kurukshetra (KUK), 136119, India

Abstract – Big data is a collection of large amount of data that

contains duplicated items collected from various sources. To

detect duplicated data from big data is a serious issue. In this

paper secure deduplication mechanism has been proposed for big

data storage. In proposed work, fixed size chunking mechanism is

used to create chunks of a large file and SHA-2 algorithm is used

to generate secure hashes of chunks and on the basis of these

hashes deduplication has been done. The proposed mechanism

has been implemented using Hadoop and analyzed using chunk

time and hash time.

Index Terms – Big Data, Deduplication, Fixed Size Chunking

(FSC), Secure Hash Algorithm (SHA) and Message Digest (MD)

and Hash function.

1. INTRODUCTION

In big data storage, large amount of data is stored in the form

of Giga Bytes (GB) and Tera Bytes (TB). The data stored in

big data is in unstructured form means data without any format.

This large amount of data is collected from different sources

that were increases duplicity in data [1]. To find duplicate data

and remove it from big data storage is a difficult problem also

managing unstructured data or converting it into structured

form is difficult problem to solve. To solve above mentioned

problems, lots of techniques exists named File-level chunking,

Block-Level Chunking. Block-Level Chunking further divided

into Fixed-Size Chunking and Variable Size Chunking to find

duplicate data [2].

1.1 File-Level Chunking

File-level chunking was also known as Whole File Chunking,

It considered all entire file as a single file and create chunk of

entire file rather than break the file into multiple chunks, here

single index was created for all the file and this process was

helpful to save the storage space. The drawback was this

technique was that if small changes are required in existing file

then no provision for that user need to change complete file [3].

1.2 Fixed Size Chunking

In Fixed -sized chunking, the file was divide into fixed size

block, set their boundary values on the basis of offsets. This

method overcomes the drawback of File Level chunking

technique. Suppose user wants to alter a few bytes then only

altered chunks need to re-index and move to the backup

location. The drawback of this method is byte shifting problem

mans which bytes will be shifted upward or downward while

data will be altered [4].

1.3 Variable Sized Chunking

Variable-Sized chunking method splits the file into multiple

chunks according to the size or content of file. The drawback

of this technique was that when chunks are created dynamically

then their indexes are also generated dynamically and if

alteration is required in chunks then same alteration is also

needed in indexes that were increase extra overhead and also

increases total processing time [5].

On the basics of chunking techniques only data is divided into

different small chunks and theses chunks only helps to find

duplicate contents but there is no security mechanism, for this

some security mechanism such as MD-5, SHA-1, SHA-2 were

needed to get some secure hash value of chunk but in SHA-1

technique security level is week because it takes only 160bits

to generate hash values also it takes more rounds to generate

secure hash value.MD-5 takes more time to generate secure

hash value and it takes 512 bits for generation of secure hash

value this was increases overall process creation time. So to

overcome drawback of both techniques in this paper SHA-2 is

used to generate secure hash value [6] [7].

In this paper secure data deduplication mechanism for finding

duplicate chunks is to be proposed in which on the basis of

secure hash value duplicate chunks has been detected and only

unique chunks will be stored in HDFS. The proposed

mechanism will generate chunks and hash in less time in

perspective of existing technique [8] [9].

2. RELATED WORK

Sun et al. [10] proposed an information chunk system for No

Sql data bases in view of the property structure tree.

Journal of Network Communications and Emerging Technologies (JNCET) www.jncet.org

Volume 7, Issue 9, September (2017)

ISSN: 2395-5317 ©EverScience Publications 11

Xia et al. 2014 [11] displayed DARE, a deduplication-mindful,

low-overhead similarity discovery and disposal conspire for

delta compression on the highest point of deduplication on

reinforcement datasets.

Wu et al. [12] proposed the INS to process not just file

compression, chunk coordinating, information de-duplication,

ongoing input control, IP data, and occupied level record

checking, yet additionally file storage, upgraded hub

determination, and server stack adjusting. By compacting and

apportioning the files as indicated by the chunk size of the

cloud file framework, they diminish the information

duplication rate. The handled files were encoded into the mark

by MD5 fingerprint for the INSs to coordinate, file, assign to

the storage servers, and give important transferring data to the

customers.

Kumar and Shalini [13] provides evaluation of different

chunking and deduplication techniques with different

parameters and they also provides comparative analysis

between different hashing techniques such as SHA and MD5.

Lu et al.[14] proposed efficient Key Value store on flash with

a Bloom Filter based index structure called Bloom Store that

not only assures an extremely low amortized RAM overhead

per KV pair by keeping a flash-page sized data buffer and a

very small sized BF buffer per Bloom Store instance in RAM,

but also achieves a high lookup/insertion throughput by

reducing the maximum number of flash page reads with key-

range partitioning; by buffering multiple BFs per Bloom Store

instance in RAM to reduce the BF-containing flash page reads

and writes.

Yan et al. [15] proposed a practical scheme to manage the

encrypted big data in cloud with deduplication based on

ownership challenge and PRE. Proposed scheme could flexibly

support data update and sharing with deduplication even when

the data holders were offline.

Fu et al. [16] proposed, an application-aware scalable inline

distributed deduplication framework in cloud environment, to

meet this challenge by exploiting application awareness, data

similarity and locality to optimize distributed deduplication

with inter-node two-tiered data routing and intra-node

application-aware deduplication.

3. PROPOSED WORK

In Big data, there are lots of duplicate data and to remove this

duplicate data in secure manner various techniques are used

like SHA-1, SHA-2, MD-5, etc. In proposed mechanism SHA-

2 algorithm is used to find duplicate data from given real data

set in secure manner.

3.1 Proposed Framework

In proposed mechanism, real dataset is downloaded from the

“data.World” website. This dataset is loaded into memory for

further processing of data. This dataset is divided into small

blocks called chunks by using fixed chunking algorithm. In

Fixed size chunking algorithm, all the files are divided into

fixed size chunks which have fixed boundaries of 1MegaByte.

After that some unique value of chunks are created through

SHA-2 algorithm. These unique values are called hash values.

Before storing these hash values in HDFS, we compare the

hash value of every chunks separately if hash value of two

chunks are same then it means there is a duplicate data and if it

is not same then it means every chunk has different value and

these chunks are stored in HDFS.

3.2 Proposed Algorithm

Algorithm. Every hash value of each chunk is compared with

hash value of another chunk and if hash values of both chunks

are same then there is duplicate data presented in real dataset

then discard this duplicate data and that data is not stored in

HDFS, otherwise chunk with different hash value are stored in

HDFS.

Description of Proposed Algorithm

In the proposed algorithm, real data set is taken from the ‘data.

World’ website and then this data is divided into different fixed

sized chunks by applying fixed size chunking algorithm and

then unique hash value of these chunks are generated through

SHA-2

3.3 Fixed Size Chunking Algorithm

In Fixed size chunking algorithm, file is divided into fixed size

chunks which have fixed boundaries of 1 Megabytes. If there

will be few changes in file then only that chunks are to be

reindexed instead of whole file and only that chunks are moved

to the backup location. The fixed size chunking algorithm, first

provide input of data set and then set the size of chunks. Load

the file into memory which generates the chunks in bytes form

and passed these chunks to next algorithm for further

processing.

Figure 3.2: Flow Chart of Propose Algorithm

Journal of Network Communications and Emerging Technologies (JNCET) www.jncet.org

Volume 7, Issue 9, September (2017)

ISSN: 2395-5317 ©EverScience Publications 12

Figure.3.3 Working Flow Chart of Fixed size Chunking

Algorithm

3.4 SHA algorithm

In this algorithm, the output of fixed level chunking algorithm

is taken as input in form of bytes.These bytes input are

converted into hexadecimal numbers to perform the XOR

operation by adding some random functions to generate a key

for generating the secure hash value of chunks. The outputted

secure hash value is used for checking the data duplicity in

chunks.

Figure 3.4 Flow Chart of SHA Algorithm

4. RESULTS AND ANALYSIS

Hadoop is used to implement proposed framework. It is open

source software. Hadoop provides Hadoop distributed

framework system to store data and process it mapper and

reducer is used.

Metrics used:

4.1 Chunk time: Chunk time is used to measure the amount

of time taken to perform chunk operations.

4.2 Hash time: It is the total time taken to perform hash values

of each chunk.

Figure 4 Average Chunk Creation Time

Figure 4 shows average chunk creation time of propose

technique and existing SHA-1 technique. Here in this figure X-

axis show data size which is varied from 400MB to 1000MB

results show that proposed mechanism has less average chunk

creation time as compared to existing techniques.

Figure 5 Average Hash creation time

Figure 5 shows average hash creation time of propose

technique and existing SHA-1 technique, results show that

proposed mechanisms have less average hash creation time as

compared to existing technique.

5. CONCLUSION

Deduplication is used to find duplicate contents from large

amount of data storage. Detection of duplicate content is a

challenging task. To solve this task this paper provides secure

Journal of Network Communications and Emerging Technologies (JNCET) www.jncet.org

Volume 7, Issue 9, September (2017)

ISSN: 2395-5317 ©EverScience Publications 13

data deduplication framework for big data storage. To

implement proposed framework Hadoop tool is used. The

proposed framework is compared with existing algorithms

such as MD-5 and SHA-1. In proposed framework average

chunk creation time is low as compare to exiting security

algorithms also proposed work has low hash time as compare

to other security algorithms. In future continue working on it

and enhance proposed framework to get less execution time

also try to apply proposed framework in some real life

applications.

REFERENCES

[1] B. Mao, H. Jiang, S. Wu, and L. Tian, “Leveraging data
Deduplication to improve the performance of primary storage systems

in the cloud”, IEEE Transaction on Computers , vol. 65, issue. 6, pp.

1775–1788, 2016.
[2] J. Hur, D. Koo, Y. Shin, and K. Kang, “Secure Data Deduplication with

Dynamic Ownership Management in Cloud Storage”, IEEE
Transactions on Knowledge Data Engineering., vol. 28, issue. 11, pp.

3113–3125, 2016.

[3] S. Luo, G. Zhang, C. Wu, S. Khan, and K. Li, “Boafft: Distributed
Deduplication for big data storage in the cloud”, IEEE Transaction on

Cloud Computing., vol. pp, issue. 99, pp. 1–1, 2015.
[4] M. Bellare, S. Keelveedhi, and T. Ristenpart, “Message-Locked

Encryption and Secure Deduplication, in Advances in Cryptology”, –

EUROCRYPT 2013, T. Johansson and P. Nguyen, Editors, Springer
Berlin Heidelberg. pp. 296-312, 2013.

[5] M .Bellare, S. Keelveedhi, and T. Ristenpart, “DupLESS: server-aided
encryption for deduplicated storage”, in Proceedings of the 22nd

USENIX conference on Security., USENIX Association: Washington,

pp. 179-194, 2013

[6] D. Harnik., B. Pinkas, and A. Shulman-Peleg, “Side channels in cloud
services, the case of deduplication in cloud storage”, IEEE Security &

Privacy, vol.8, issue.6, pp. 40-47, 2010.
[7] Z. Yan, W. Ding, X. Yu, H. Zhu, and R. H. Deng, “Deduplication on

Encrypted big data in cloud”, IEEE Transaction on Big Data, vol. 2,

issue 2, pp. 138–150, 2016.
[8] J. Wang, Z. Zhao, Z. Xu, H. Zhang, L. Li, and Y. Guo, “I-sieve: An

inline high performance deduplication system used in cloud storage”,
Tsinghua Science and Technology, vol. 20, issue 1, pp. 17–27, 2015.

[9] Deepu. S R, Bhaskar. R, and Shylaja. B S, “Performance Comparison

Of Deduplication Techniques For Storage In Cloud Computing
Environment”, Asian J. of Comput. Sci. Inf. Technol., vol. 4, issue.5,

pp. 42–46, 2014.
[10] S. Sun, Y. Shi, S. Zhang and L. Cui, “A Privacy Protection Mechanism

for No Sql Database Based on Data Chunks”, IEEE Trust Com-Big Data

SE-ISPA, pp.829-836, 2016.
[11] W. Xia, H. Jiang, D. Feng and L. Tian, “Combining Deduplication and

Delta Compression to Achieve Low-Overhead Data Reduction on
Backup Datasets”, Data Compression Conference, pp. 203-212, 2014.

[12] Tin-Yu Wu, J. Shyang Pan and C.-Fan Lin, “Improving Accessing

Efficiency of Cloud Storage Using De Duplication and Feedback
Schemes”, IEEE Systems Journal, vol 8 ,Issue 1, pp. 208-218, 2014.

[13] N. Kumar and Shalini, “Estimation of Secure Data Deduplication in Big
Data”, International Journals of Advanced Research in Computer

Science and Software Engineering, vol.7,issue 6, pp. 702-705,2017.

[14] G. Lu, Y. Jin Nam and D. H.C. Du, “BloomStore: Bloom-Filter based
Memory-efficient Key-Value Store for Indexing of Data Deduplication

on Flash”, IEEE 28 Symposium on Mass Storage Systems and
Technologies San Diego, CA, USA, pp.1-11, 2012.

[15] Z. Yan, W. Ding, X. Yu, H. Zhu, and Robert H. Deng, “Deduplication

on Encrypted Big Data in Cloud”, IEEE Transactions on Big Data, vol.
2, issue. 2, pp.138-150, 2016.

[16] Y. Fu, N. Xiao, H. Jiang, G. Hu, and W. Chen, “Application-Aware Big
Data Deduplication in Cloud Environment”, IEEE Transactions On

Cloud Computing, vol. pp, issue 99, pp.1-14, 2017.

